Thermodynamic magnon recoil for domain wall motion
نویسندگان
چکیده
We predict a thermodynamic magnon recoil effect for domain wall motions in the presence of temperature gradients. All current thermodynamic theories assert that a magnetic domain wall must move toward the hotter side, based on equilibrium thermodynamic arguments. Microscopic calculations, on the other hand, show that a domain wall can move either along or against the direction of heat currents, depending on how strong the magnonic heat currents are reflected by the domain wall. We have resolved the inconsistency between these two approaches by augmenting the theory in the presence of thermal gradients by incorporating in the free energy of domain walls a heat current term present in nonequilibrium steady states. The condition to observe a domain wall propagation toward the colder regime is derived analytically and can be tested by future experiments.
منابع مشابه
Electric field control of magnon-induced magnetization dynamics in multiferroics
We consider theoretically the effect of an inhomogeneous magnetoelectric coupling on the magnon-induced dynamics of a ferromagnet. The magnon-mediated magnetoelectric torque affects both the homogeneous magnetization and magnon-driven domain wall motion. In the domains, we predict a reorientation of the magnetization, controllable by the applied electric field, which is almost an order of magni...
متن کاملThe unified model description of order-disorder and displacive structural phase transitions
Starting from a general Hamiltonian of pair-coupled anharmonic (quartic) oscillators, together with the concept of local normal coordinates, a unified model description of both order-disorder and displacive types of SPT-systems is proposed. Within the framework of the standard variational procedure, a hybridized pseudospin-phonon Hamiltonian is formulated by introducing variables corresponding ...
متن کاملDynamics of an insulating Skyrmion under a temperature gradient.
We study the Skyrmion dynamics in thin films under a temperature gradient. Our numerical simulations show that both single and multiple Skyrmions in a crystal move towards the high temperature region, which is contrary to particle diffusion. Noticing a similar effect in the domain wall motion, we employ a theory based on magnon dynamics to explain this counterintuitive phenomenon. Unlike the te...
متن کاملSwift thermal steering of domain walls in ferromagnetic MnBi stripes
We predict a fast domain wall (DW) motion induced by a thermal gradient across a nanoscopic ferromagnetic stripe of MnBi. The driving mechanism is an exchange torque fueled by magnon accumulation at the DWs. Depending on the thickness of the sample, both hot-to-cold and cold-to-hot DW motion directions are possible. The finding unveils an energy efficient way to manipulate DWs as an essential e...
متن کامل